Optics

From The Essence Bay
Jump to: navigation, search

Classical mechanics
Relativistic mechanics
Thermal physics
Optics
Electromagnetism
Quantum mechanics
Atomic physics
Nuclear physics
Particle physics

Reflection.png

Reflection

$$\begin{array}{l} \theta &\text{angle} &\mathrm{rad} \end{array}$$

$$\begin{array}{l} \theta_a = \theta_b \end{array}$$
Spherical-mirror.png

Spherical mirror

$$\begin{array}{l} f &\text{focal length} &\mathrm{m} \\ d &\text{distance} &\mathrm{m} \\ h &\text{height} &\mathrm{m} \\ M &\text{magnification} & \end{array}$$

$$\begin{array}{l} \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \\ M = \frac{h_i}{h_o} = -\frac{d_i}{d_o} \end{array}$$
Refraction.png

Refraction

$$\begin{array}{l} n &\text{refractive index} & \\ \theta &\text{angle} &\mathrm{rad} \end{array}$$

$$\begin{array}{l} n_a \sin \theta_a = n_b \sin \theta_b \end{array}$$
Spherical-lens.png

Spherical lens

$$\begin{array}{l} n &\text{refractive index} & \\ R &\text{radius} &\mathrm{m} \\ d &\text{distance} &\mathrm{m} \\ h &\text{height} &\mathrm{m} \\ M &\text{magnification} & \end{array}$$

$$\begin{array}{l} \frac{n_b - n_a}{R} = \frac{n_a}{d_o} + \frac{n_b}{d_i} \\ M = \frac{h_i}{h_o} = -\frac{n_a \cdot d_i}{n_b \cdot d_o} \end{array}$$
Convex-lens.png

Convex lens

$$\begin{array}{l} f &\text{focal length} &\mathrm{m} &+ &\cdot \\ d &\text{distance} &\mathrm{m} &+ &+ \\ h &\text{height} &\mathrm{m} &+ &- \\ P &\text{power} &\mathrm{dioptres} &+ &\cdot \\ M &\text{magnification} &\cdot &- &\cdot \end{array}$$

$$\begin{array}{l} \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} = P \\ M = \frac{h_i}{h_o} = -\frac{d_i}{d_o} \end{array}$$
Concave-lens.png

Concave lens

$$\begin{array}{l} f &\text{focal length} &\mathrm{m} &- &\cdot \\ d &\text{distance} &\mathrm{m} &+ &- \\ h &\text{height} &\mathrm{m} &+ &+ \\ P &\text{power} &\mathrm{dioptres} &- &\cdot \\ M &\text{magnification} &\cdot &+ &\cdot \end{array}$$

$$\begin{array}{l} \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} = P \\ M = \frac{h_i}{h_o} = -\frac{d_i}{d_o} \end{array}$$
Wavelength.png

Wave

$$\begin{array}{l} v &\text{speed} &\mathrm{m \cdot s^{-1} } \\ \nu &\text{frequency} &\mathrm{Hz} \\ \lambda &\text{wavelength} &\mathrm{m} \\ c &\text{speed of light} &\mathrm{m \cdot s^{-1} } \\ n &\text{refractive index} & \end{array}$$

$$\begin{array}{l} v = \nu \lambda \\ v_{vacuum} = c \\ n = c \, / v \\ \nu = \text{const} \end{array}$$